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Phenomenological viscous factor in the nonequilibrium distribution function for liquids
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An improved formula of shear viscosity for liquids is presented by introducing a phenomenological viscous
factor in the nonequilibrium term in the doublet distribution function, which improves an incomplete formula
of shear viscosity presented in an early work of Born and Green. The phenomenological viscous factor
effectively counts some higher-order interactions, and is constrained so that, in the limit of hard-sphere liquids,
the magnitude of the improved formula of shear viscosity reduces to that of Enskog for dense fluids. The
improved formula does not require any adjustable parameters except for the pair potential to describe liquids.
In order to verify the improved formula, a liquid of Ar near the triple point is studied in detail. In addition,
liquids of Pb in wide ranges of temperature are examined to test the temperature dependence of the phenom-
enological viscous factor. Here an available integral equation is employed to calculate the radial distribution
function by prescribed pair potentials. One finds that the present formula is capable to describe the shear
viscosity in accord with those of experimental data for both cases of Ar and Pb. The phenomenological viscous

factor plays a crucial role in the evaluation of shear viscosity for liquids.
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I. INTRODUCTION

The transport phenomena of fluids is most important in
the nonequilibrium statistical mechanics in aspects of know-
ing the detail dynamics of molecules in fluids as well as the
practical quantities of crystal and noncrystal formations from
fluids.

The most well-known formulation of the transport phe-
nomena by means of statistical mechanics called kinetic
theory is based on a formalism of the singlet distribution
function of the Chapman-Enskog method [1], by which one
may evaluate the transport coefficients of diffusion, viscous
flow, and thermal conductivity independently. In the frame-
work of the Chapman-Enskog method, formulas of the trans-
port coefficients for dense fluids, being assumed as the hard-
sphere constituents, were firstly derived by Enskog [1], and,
up to present, considerable efforts have been devoted to ex-
tending it to realistic dense fluids. In a recent work [2] along
this line, the pair potential to describe a realistic dense fluid
is approximated as superposition of the square-well poten-
tials, which enables one to directly use the Chapman-Enskog
method. The theoretical evaluation performed in [2] for the
transport coefficients of liquid Ar shows good agreement
with the results of experimental data and computer simula-
tions. In this evaluation, however, some adjustable param-
eters except for the pair potential to describe liquid Ar are
involved.

On the other hand, by generalizing the work of Kirkwood
and co-workers [3], Rice and Allnatt (RA) [4,5] obtained
more complete equations, involving the Brownian motion,
for the transport coefficients of a realistic dense fluid. The
RA theory treats the singlet and doublet distribution func-
tions, and truncates the higher-order terms in the so-called
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy [6], by adopting a generalized superposition approxima-
tion [4] for the triplet distribution function. From the RA
theory, one may, in principle, evaluate all the transport coef-
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ficients without any adjustable parameters except for the pair
potential to describe a realistic dense fluid. However, due to
the difficulty in evaluation for the friction constant, they had
to use experimental diffusion data in order to obtain the other
transport coefficients. Their results [5] showed overall agree-
ment with the experiments, existing at that time, for the
transport coefficients of shear and bulk viscosities and ther-
mal conductivity of liquid Ar. Since then, there appeared a
report of a precise experiment [7] for the bulk viscosity, and
also a critical comparison [8] for the RA theory with accurate
computer simulations for the shear viscosity and the thermal
conductivity. Unfortunately, these works indicate that the RA
theory is not suitable to use for predictions of transport co-
efficients for dense fluids. One ought to seek, therefore, an
alternative approach to describe the transport phenomena for
dense fluids.

One of the alternative approaches for the transport phe-
nomena would be the one based on the time-dependent cor-
relation functions [9], which has been developed by guidance
of computer simulations. Following such an approach, one
may describe detail dynamics of molecules in a fluid such as
the autocorrelation functions, from which one may evaluate
transport coefficients in a certain limit. One would thus ex-
pect to evaluate reasonably accurate transport coefficients for
various liquids by such an approach. However, we do not
follow such an approach. Rather, we revive an early work
[10] of Born and Green (BG) for the following reasons.
Firstly, although there was a caution [11] (see the next para-
graph) to use the BG formula of shear viscosity presented in
[10], it was known that the temperature dependences of shear
viscosity evaluated by the BG formula were in accord with
experimental data for some various liquid metals [12]. Sec-
ondly, in the limit of hard-sphere liquids, the BG formula of
shear viscosity reduces to that of Enskog with a constant
factor, so that the BG formula may be regarded as a simply
generalized Enskog formula extended to a realistic dense
fluid. Thirdly, as we shall see in the next section, the BG
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formula of shear viscosity is written in a quite simple form,
so that, along the BG approach, one may expect to deduce
practical formulas of the transport coefficients for various
liquids.

The BG approach was developed in parallel, but in a dif-
ferent manner, with that of Kirkwood and co-workers [3].
The most essential difference between these approaches is in
consideration for the Brownian motion. The approach of
Kirkwood and co-workers [3] directly connected the equa-
tion of the Brownian motion, which eventually enables one
to evaluate the transport coefficients in a certain approxima-
tion without any adjustable parameters except for the pair
potential. On the other hand, the BG approach did not di-
rectly involve the equation of the Brownian motion, but ex-
tended the Chapman-Enskog method in a straightforward
manner to a dense fluid. Namely, they assumed a form of the
doublet distribution function analogous to that of the singlet
distribution function as in the Chapman-Enskog method. Un-
like the case of the singlet distribution function, a unknown
quantity, being implemented in the nonequilibrium term rel-
evant to the shear viscosity in the doublet distribution func-
tion, could not be solved. Thus, the BG formula of shear
viscosity was derived from a dimensional analysis [11] for
the term proportional to the nondivergent rate of strain tensor
in the nonequilibrium term in the doublet distribution func-
tion, so that this formula involves one unknown quantity.

Recently, the BG formula of shear viscosity was em-
ployed [13] to speculate features of the pair potentials for
liquid metals by using the experimental data for shear vis-
cosity and radial distribution function (RDF). There the un-
known quantity of the BG formula was regarded as a param-
eter to fit the experimental viscosities. Although within a
limited analysis, using prescribed potential forms for liquid
metals, the overall results obtained for some various liquid
metals could explain the characteristics, such that the feature
of the pair potential becomes longer ranged according to in-
crease of the valence electrons of an atom in a liquid. It was
noticed that the overall variations of the unknown quantity
for the liquid metals are relatively small, and yet possess
some regularity, which indicates that the unknown quantity
may be replaced by some physical quantity.

In the present paper, we shall determine the unknown
quantity in the BG formula of shear viscosity for liquids in a
phenomenological manner as follows: It is known [14] that,
for fluids of relatively lower density than that of a liquid, the
shear viscosities evaluated by the Enskog formula agree with
those obtained by computer simulations. Therefore, firstly,
we constrain the unknown quantity so that, in the limit of
hard-sphere liquids, the magnitude of the BG formula of
shear viscosity reduces to that of Enskog. Secondly, without
disturbing the above constraint, we implement an averaged
cross section of momentum transfer of molecules for the un-
known quantity, which would bring some viscous effect aris-
ing from higher order of interactions of molecules into the
BG formula. Let us call the factor so determined as a phe-
nomenological viscous factor, by which we are able to obtain
an improved formula of shear viscosity for liquids.

Our improved formula for shear viscosity is expressed as
an integral of a product of the derivative of pair potential and
the RDF, and, thus, the formula does not require any adjust-
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able parameters except for the pair potential. In order to
verify our improved formula, one needs accurate calculations
for the RDF by the pair potential. For this purpose, we shall
employ a modified hypernetted chain (MHNC) equation pre-
sented in [15], and study a case of liquid Ar in detail, since
the characteristics for this liquid are well investigated experi-
mentally as well as theoretically. We shall then proceed to
testing our improved formula for shear viscosity for liquid
Pb, from which the temperature dependence of the phenom-
enological viscous factor may be verified.

The layout of this paper is as follows. In Sec. II, our
phenomenological viscous factor and improved formula of
shear viscosity are presented. The procedure to solve the
MHNC equation is described in Sec. III. Then we proceed to
Sec. IV for examination of our improved formula for liquid
Ar and liquid Pb. There the numerical results are given. Sec-
tion V is devoted to the summary and discussion.

II. THE PHENOMENOLOGICAL VISCOUS FACTOR

In a classical system of N equivalent molecules, the dis-
tribution function for the whole system at time ¢ is defined by
N position vectors and N momentum vectors of molecules.
Assuming that the molecules are governed only by binary
additive interactions, one obtains the BBGKY hierarchy [6]:

d J
f f “’2]1 : ﬁdrzdpz, (1)

where m is the mass of a molecule in the system, f;
=fi(r,p1;1) and fo=f5(r;,r;,p;,py;t) are the singlet
and doublet distribution functions, respectively, and ¢,;
=@(Jry—r;|) is a binary interaction between a pair of mol-
ecules 1 and 2. The vectors of r and p correspond, respec-
tively, to the positions and the momenta of molecules speci-
fied by the suffixes. The term in the integral of Eq. (1)
connects the higher rank of distribution function, so that the
equation for the doublet distribution function associates with
an integral of terms connecting the triplelet distribution func-
tion by the respective binary interactions. The equation con-
tinues until N-molecule distribution function appears in the
integral.

The pressure tensor of the system can be obtained [16,17]
from Eq. (1) by multiplying with p; and integrating over p;:

P1 Iy
(9 m (9[']

1
P= J (_P1P1 - muu)fldpl
m

I [ ryryy
—_f 2 219021('”21)"2(1'2171'1J)drzh (2)
2 r2

where u is the macroscopic velocity of fluid defined by

1
u= ll(r1’f)‘Ffp1f1(l'1ap1,f)dp1 (3)

with
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”1:”1(1'1§t):ffl(l'l,l)l;l)dpl, (4)

r» is the magnitude of ry;=r,—r,, and ¢, is the first deriva-
tive concerning r,;. Here i,(ry;, (r;+1,)/2;1) =n,(r;,r);1):

”2(1'1,1'2;1)=Jsz(l'l,l'z,Pl,pzﬂ)dpldpz (5)

and the term in the last integral of Eq. (2) is obtained by a
Taylor’s expansion for 71, concerning the coordinate of the
center of mass around r; (see [17]).

By assuming certain forms for f; and 7, in the integrals of
Eq. (2), one may obtain a formula of shear viscosity. The first
integral of Eq. (2) is called the kinetic contribution governed
by the singlet distribution function which is affected by some
distortion due to the binary interaction. The second integral
of Eq. (2) is called the potential contribution that dominates
over the first one in high density fluids like liquids, so that
we ignore the first one. In order to obtain a formula of shear
viscosity for liquids, let us follow the procedure of Born and
Green [10,17], assuming a form of nonequilibrium term in
the doublet distribution function as

ﬁZ:n%g(rZ])fsasFZIfZI : i“'f'zl, (6)
ar

where Ty, =1,,/7,;, g(ry;) is the equilibrium RDF of a pair of
molecules 1 and 2, and (J/dr;)u is the nondivergent rate of
strain tensor. For later convenience, a,=(4m/mkT)"? is cho-
sen, where k and T are the Boltzmann constant and the ab-
solute temperature, respectively, and hence f; is a nondimen-
sional quantity. Substituting Eq. (6) into the second integral
of Eq. (2), one may obtain a formula of shear viscosity for
liquids as

4 [ am\'? 2 * 4
77s=fs_<_> ”f ©3,(r21)g(ry)ry dryy. (7)
15\ kT i, e 21

Since the unknown quantity f; still remains in the above
formula, this is essentially the same as the one presented in
the BG approach [10].

Now let us constrain f; in the formula (7) so that, in the
limit of hard-sphere liquids, the magnitude of this formula
reduces to the relevant term in the Enskog formula. By use
of the convenient form for the hard-sphere pair potential

[18]:
@' (ry) == kT8(ry; — 09), (8)

where o) and &(r) are the diameter of hard-sphere molecule
and the Dirac & function, respectively, we may rewrite the
formula (7) as

4
|7]s| =fsE(7kaT)l/2ﬂ%g(O'0)0'é. (9)

Since we ignore the kinetic contribution, this formula corre-
sponds to the one in the Enskog formula derived from the
collisional momentum transfer of molecular properties (the
term with a quantity denoted by @ in [19]), which implies
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fi—=1 (10)

in the limit of hard-sphere liquids.

So far, we have not considered any contributions from the
higher rank of the hierarchy. Such contributions may be
partly taken into account by employing an averaged cross
section for momentum transfer of molecules [20] known as
Q2 in [21] (equivalently Q%,(2) in [1]). Maintaining the
constraint given by Eq. (10), we implement this averaged
cross section as

02
- [Q(Z’Z)Jhrdsph

where [9(2’2)]hrdsph is the corresponding hard-sphere values,
so that f, reduces to unit in the limit of hard-sphere liquids.
Substituting Eq. (11) into Eq. (7), we obtain an improved
formula of shear viscosity for liquids.

Here one notices that the term of the averaged cross sec-
tion in our formula for shear viscosity for liquids plays an
opposite role to that in the ordinary formula for a dilute gas
[1]. When the value of this cross section becomes larger, the
shear viscosity decreases in the case of a dilute gas and in-
creases in our case. This is due to two independent mecha-
nisms of momentum transport; the former corresponds to the
bodily movement of individual molecules through space and
the latter to the action of interactions of molecules at a dis-
tance. The stronger interaction of molecules increases the
shear viscosity in our case. Our formula of shear viscosity
counts, therefore, some effect from higher order of interac-
tions of molecules, together with the binary interaction in the
integral of Eq. (7) which is originated from an internal force
acting on a pair of molecules in a liquid. Except for the role
of this cross section in the formula of shear viscosity, the
choice of f; is not unique. For instance, the higher power of
the right-hand side of Eq. (11) also satisfies the above con-
straint. Therefore, our improved formula of shear viscosity
must be verified by numerical evaluations.

fs = Q2" (11)

III. THE INTEGRAL EQUATION

Since there is much work [22,23] on this subject, we only
note here some formulas in order to explain our procedure to
calculate the RDF by solving the MHNC equation [15]. The
integral equation is written in a form

In g(r) == B(r)
2 [~
+ TJ [K([r =) = K(|r + )1l g(r) - 1]dt,
0
(12)
and a kernel K(y) of the MHNC equation is given by

K(y) =f sl=Be(s) + g(s) = 1 = Ing(s)lds,  (13)
Iyl
where r=r,y;, B=1/kT, n=n; for which we implement the

number density of a liquid, and ¢®(r) is an effective pair
potential defined with the bridge function b(r) as
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¢*(r) = ¢(r) + b(r)/ B (14)

The case of b(r)=0 corresponds to the ordinary hypernetted
chain (HNC) equation [23], and the bridge function em-
ployed in the MHNC equation is

b(r) == Cpy(r) = 1 = In[= Cpy(r)],
r> o (15)

r< (o)
= gpy(r) — 1 —1In gpy(r),

where the analytical forms for Cpy(r) and gpy(r) are given in
[24], and o, is treated as a parameter in the MHNC equation,
but it does correspond to the diameter of hard-sphere mol-
ecule in the Percus and Yevick (PY) model [25]. Instead of
this diameter, we use the corresponding packing fraction
pr=7T0'(3)I’l/ 6 for a parameter of the MHNC equation as in
[15]. Let us call this parameter the MHNC parameter.

Our procedure to numerically solve the integral equation
(12) is as follows. Taking a form of the RDF as

g(r) = exp{= Bl (1) + v (N1}, (16)

we seek a self-consistent solution for v(r) by iteration. We
start with a trial v(r), and calculate Eq. (12), then determine
new input v"*¥(r) by

v"%(r) = av®(r) + (1 — @)v°(r), (17)

where v°9(r) is the first input, v°(r) is the resultant output,
and then use v™"(r) for input in the next calculation. Here
we employed the empirical value a=0.95 [23]. One should
choose a trial v(r) reasonably close to the real solution, oth-
erwise the integral equation does not converge. For this pur-
pose, we started from a solution [26] obtained by use of the
PY model for the Lennard-Jones potential of the reduced
temperature, T'=kT/e=0.88, and the reduced number den-
sity, n"=0"n=0.85. The tabulated values of this solution at
certain points for r are given in [26].

Since the function in the integral in the kernel (13) be-
haves smoothly, we employ Gauss integration to calculate
the kernel. The necessary points for the Gauss integration are
interpolated from the input quantity such as the trial v(r)
whose coordinates are given at certain points. The kernel so
obtained also behaves smoothly, and, thus, we also employ
Gauss integration to calculate the integral of Eq. (12). The
necessary points for this Gauss integration are interpolated
from the obtained kernel. This procedure would make the
computational work shorter and easier than the calculation
by the Simpson’s integration.

In order to test the reliability of the RDF calculated by
solving the integral equation (12), one evaluates thermody-
namic quantities of the excess internal energy

e’}

U™ = 27TnNAJ o(r)g(r)ridr, (18)
0

where N, is Avogadoro’s number; the pressure
27, (7, 3
p=nkT - 3" o' (r)g(r)rdr, (19)
0

and the isothermal compressibility; and, then, compare these
quantities as well as the feature of the RDF with those ob-
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FIG. 1. The radial distribution functions for liquid Ar at 85 K.
The Lennard-Jones potential, T"=kT/€e=0.719 and n"=0"n=0.85,
is assumed for liquid Ar near the triple point (see the last paragraph
in Sec. II). The solid and broken curves correspond to the results
calculated by the MHNC and HNC equations, respectively. The
circles are the results obtained by the MD simulation given in [27].

tained by computer simulations. We also follow this proce-
dure, but we do not consider the isothermal compressibility,
since an evaluation for this quantity involves some other
errors associated with the numerical Fourier transformation
of the RDF.

The most suitable liquids for testing our improved for-
mula of shear viscosity presented in Sec. II would be those
of Ar, which have been well investigated experimentally as
well as theoretically. It is known [27,28] that a liquid of Ar
near the triple point (I'=85 K, n=0.021 25 A~3) is well de-
scribed by the Lennard-Jones potential:

adl]

with the potential parameters of €=0.0102 eV and
0=3.42 A, corresponding to 7°=0.719 and n"=0.85, respec-
tively. The work of [15] showed that the RDF calculated by
use of the MHNC parameter of 0.43 gives the thermody-
namic quantities as well as the feature of the RDF compa-
rable with those obtained by computer simulations. There-
fore, in the next section, we firstly show our RDF calculated
by use of the same MHNC parameter as well as the same
potential parameters for this liquid, and confirm that our re-
sultant quantities agree with those presented in [15,27].

IV. NUMERICAL RESULTS

By the procedure described in the previous section, we
calculated the RDFs by the integral equation (12) for liquid
Ar near the triple point. Figure 1 shows our calculated RDFs
with the results obtained by a molecular dynamic (MD)
simulation [27] (compare with Fig. 14 in [15]). The Table I
compares our thermodynamic quantities evaluated by use of
our RDF (calculated by the MHNC equation) with the results
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TABLE I. The thermodynamic quantities and the shear viscosity
for liquid Ar at 85 K.

U P 7, (mPa's)
Present -8.53 0.43 0.23
MD -8.51 0.36
(-8.49) (0.49) (0.23)
Experiment 0.28

Here U"=BU%/N, and p"=Bp/n. The corresponding value of
Q227 5 1.882. The values in the second line are the results given
in [27], whereas those in the third line (in the parentheses) are
obtained by use of the radial distribution function interpolated from
the one tabulated in [27]. The experimental shear viscosity
(T=84 K, n=0.021 08 A73) is taken from the Table 1.2 in [29].

of the MD simulation [27]. One sees that our results are
comparable with those of [15,27], which confirms the reli-
ability of our procedure to calculate the RDF by the MHNC
equation. By use of our RDF calculated for liquid Ar near the
triple point, we then evaluated the shear viscosity by our
formula (7) presented in Sec. III. The result is also given in
the Table I, where one sees that our result is comparable with
the experimental one.

We also evaluated the thermodynamic quantities as well
as the shear viscosity by use of the RDF interpolated directly
from the one tabulated in [27]. The results are also displayed
in the Table I, where one notices that, even using the same
RDF, our value evaluated for the pressure deviates from the
one given in [27]. The reason for this is as follows. Since the
sign of the derivative of the pair potential changes at the
minimum point, correspondingly around the position of the
first peak of the RDF, evaluations for the pressure and the
shear viscosity are very sensitive to the relative shapes and
positions of the pair potential and the RDF, especially in the
inside region of the position of the first peak. The deviation
of our value evaluated for the pressure from the one given in
[27], even using the same RDF, is due to the error associated
with the interpolation from the limited numbers of the points
for the RDF tabulated in [27]. As for the shear viscosity,
however, the relevant function in the integral possesses the
power of r larger by one than that of the pressure [compare
Egs. (7) and (19)], so that the error associated with the inter-
polation acts less in the evaluation for the shear viscosity
than that for the pressure.

Now let us examine the temperature dependence of f
which is assumed as Q??" in the present work. Figure 2
shows the temperature dependence of f; for the Lennard-
Jones potential (20), where one sees that the variation of f;
for liquid Ar from the melting point of 84 K to the boiling
point of 87 K is very small, and it changes only about 2%, so
that, in the case of liquid Ar, an obvious examination for the
temperature dependence of f, cannot be expected. On the
other hand, there are elaborate experimental data of the RDF
and the shear viscosity for liquid metals over wide ranges of
temperature [31,32], so that one expects a suitable example
among liquid metals for this purpose. Figure 2 also shows
such a variation in a case of liquid Pb from 613 K near the
melting point to 1173 K, the pair potential of which we ex-
plain below.
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FIG. 2. The temperature dependence of f,. The solid curve cor-
responds to f; assumed as Q@2 The values for Q2" are taken
from the table in [30]. The regions indicated by the arrows corre-
spond to 84—87 K for liquid Ar and 613—1173 K for liquid Pb. The
pair potential for liquid Pb is assumed as the Lennard-Jones poten-
tial (see the text).

It is known that, due to the conduction electrons, the pair
potentials for liquid metals differ from that of liquid Ar.
However, the pair potentials for some liquid metals such as
those of Cu and Ag indicate the similar features to that of the
Lennard-Jones potential [13,33], which implies that some
liquid metals may be described approximately by the
Lennard-Jones potential. In order to test the temperature de-
pendence of f;, we choose liquid Pb, since the crystal struc-
ture of Pb is the same fcc as those of Cu and Ag, and the
experimental RDF of liquid Pb at 613 K [31] possesses the
height of the first peak as well as its oscillation similar to
those of liquid Ar near the triple point. Therefore, we start
with the RDF of liquid Ar near the triple point regarding as a
first trial RDF for liquid Pb at 613 K, and seek the potential
parameters, € and o, for this liquid Pb. Firstly the value of o
may be guessed by shifting the first trial RDF along the
r-axis according to the experimental RDF of the liquid Pb, so
as to let these RDFs have the same starting (rising) position
of the first peak. By use of the value of o so guessed and the
corresponding experimental number density for the liquid
Pb, an improved RDF may be calculated by the MHNC
equation. The height of the first peak of the improved RDF,
however, becomes slightly smaller than that of the first trial
RDF. Thus, one adjusts the value of € so as to get the same
height of the experimental data. After some small correc-
tions, but keeping fpy=0.43, one reaches the RDF of liquid
Pb at 613 K as shown in the Fig. 3. The final values of o and
€ for liquid Pb at 613 K are displayed in the Table II.

Now let us extend our potential to the regions of higher
temperature. When one calculates the RDF at 1173 K by use
of the same potential parameters obtained at 613 K, the re-
sultant RDF, comparing with the experimental one, slightly
shifts to the outer regions along the r-axis. We remedy this
by introducing a temperature dependence in o as

o=0,—-(TIT, - 1)a, (21)

where 0,=2.96 A, T,=613K, and a=0.0985. The pair po-
tential so obtained is, thus, a temperature-dependent poten-
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FIG. 3. The radial distribution functions for liquid Pb at four
temperatures. The solid curves correspond to the results calculated
by the MHNC equation with fpy=0.43. The potential parameters
for the corresponding temperatures are given in the Table II.

tial, by which we calculated the RDF at three other tempera-
tures where the experimental data for the RDFs of liquid Pb
are available. Here we also kept fpy=0.43. The results are
also shown in Fig. 3, and the potential parameters employed
in the calculations are summarized in the Table II. There one
can see that the overall features of our RDFs are in accord
with those of the experimental data.

Employing our temperature-dependent potential, we
calculated the RDFs for liquid Pb at additional ten points of
temperature in the region of 7=450-1300 K, where we
employed an empirical formula of the density of liquid Pb
given in [32]. We then evaluated the shear viscosities for
liquid Pb by our formula (7) with the resultant RDFs at
the corresponding temperatures. Figure 4 shows our results
for the shear viscosity comparing with the experimental ones
[34,35]. One sees clearly good agreement with the experi-
mental ones, and that, without our f, neither the temperature
dependence nor magnitude of the shear viscosity can be
described.

TABLE II. The potential parameters and the corresponding val-
ues of f for liquid Pb.

T (K) n(A-?) a(A) T n* Q22
613 0.0310 2.960 0.640 0.804 1.998
823 0.0302 2.926 0.859 0.757 1.715
1023 0.0295 2.894 1.068 0.715 1.536
1173 0.0287 2.870 1.225 0.679 1.438

Here €=0.0825 eV is employed at all the temperatures. The values
in the column of n are the experimental data taken from [31], and
those in the column of Q22" (=f,) are interpolated from those
tabulated in [30].
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FIG. 4. The shear viscosities for liquid Pb. The solid curve
corresponds to our evaluated result, whereas the broken one is two
times as large as the result evaluated by setting f,=1 at all tempera-
tures. The points indicated by the asterisks correspond to those
evaluated at the temperatures, where our calculated radial distribu-
tion functions, together with those of the experimental data, are
shown in Fig. 3.

V. SUMMARY AND DISCUSSION

In this paper, we have presented an improved formula of
shear viscosity for liquids by introducing a phenomenologi-
cal viscous factor for the nonequilibrium term in the
doublet distribution function. The magnitude of the improved
formula is normalized by some factor so that, in the limit of
hard-sphere liquids, the formula reduces to that of Enskog
for dense fluids. We chose an average cross section
of the momentum transfer of molecules for the phenomeno-
logical viscous factor, which effectively counts contribution
from some higher order of interactions of molecules. This
choice is not unique. We verified it by the numerical evalu-
ation for the shear viscosities in the cases of liquid Ar near
the triple point and liquid Pb in the wide ranges of tempera-
ture. For this purpose, we employed the MHNC equation to
calculate reasonably accurate radial distribution functions
for the liquids. The results for the shear viscosity as well
as those for the radial distribution function are all in
good agreement with the experiments. The phenomenologi-
cal viscous factor plays a crucial role to describe the shear
viscosity in aspects of its magnitude and its temperature de-
pendence. Within the approximation of the prescribed
Lennard-Jones potentials for the liquids, our present work
showed that, consistently with the calculations for the radial
distribution functions, one may evaluate the shear viscosity
by the presented improved formula which does not require
any adjustable parameters to fit any experimental transport
coefficients.

In the evaluation for the shear viscosity at each tempera-
ture, we used a radial distribution function calculated by the
MHNC equation which involves one parameter adjusted to a
radial distribution function obtained by computer simula-
tions. We kept the same value for this parameter in all the
cases of liquid Pb in the wide ranges of temperature. This
may cause some deviations in our calculated radial distribu-
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tion functions from those obtained by computer simulations,
since the value of this parameter in the MHNC equation
slightly depends on temperature and density [36]. However,
even considering such a variation of this parameter accord-
ing to the temperature and density, there are alternative ways
to seek pair potentials of liquids, although these would be
more complicated than our procedure presented in the pre-

PHYSICAL REVIEW E 72, 051203 (2005)

ceding section. The results so obtained would be still the
similar to those in the present work.
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